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What is a neural differential equation?

These are differential equations where the vector field is parametrised
as a neural network.

Standard example: Neural ODEs [1], due to Chen et al. (NeurIPS 2018).

Y ),
y(0) = yo,

where fy can be any neural network (feedforward, convolutional, etc).

James Foster (University of Bath)

Reversible solvers for NDEs

13 January 2024



Examples of neural ordinary differential equations

A simple example: The SIR model for modelling infectious diseases

4 (S0 —bs(t)i(1)
— ([(t)) = (bs(z‘)z‘(t) ki(f)) ;
r(t) ki(1)

where b and k are parameters that are learnt from data.

Outputs

_____________________

At the other extreme, Neural ODEs have achieved 70% accuracy for
ImageNet classification [2] (competitive with a well-tuned ResNet).
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How to train your Neural ODE (backpropagation)

Step 1. Define a differentiable scalar loss function based on the data

L(y(t)) =L (ODESolve(y(O), t,f9)> :

Step 2. As “ODESolve” is a composition of differentiatiable operations,
we can compute using automatic differentiation / backpropagation.
Step 3. Apply stochashc gradient descent (SGD) with dL to minimize L.

However...

When applying backpropagation, we store the full ODE trajectory {yz, }.

Thus, the memory cost scales linearly with the number of steps / depth.
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How to train your Neural ODE (adjoint method)
Step 1. Define a differentiable scalar loss function based on the data
L(y(t)) =L <ODESo/ve(y(0), t fg)).

Step 2. Compute L(y(T)) via ODE solver. Then a(t) := ag(yy(())) satisfies

da(t) A (t,y(1))
a =’ oy

Step 3. Solve the above adjoint equation via ODE solver, and evaluate

)
Zé:/() a(t)T(%(ggy(t)) dt

Step 4. Apply stochastic gradient descent (SGD) with dL to minimize L.
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Reconstruction and extrapolation of spirals with
irregular time points (taken from [1])

== Ground Truth
® Observation

== Prediction

= Extrapolation

Figure: Neural ODE
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Why Neural ODEs and the adjoint method?

Flexible, includes “mechanistic” and “deep” models (+ hybrids [3])

Continuous time, so well suited for handling (irregular) time series

Choice of ODE solver allows trade-offs between accuracy and cost

Adjoint method is memory efficient! (i.e. doesn’t scale with depth)

However...

Solving the ODE and its adjoint equation gives inexact gradients.
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Reversible ODE solvers

We can compute gradients accurately using backpropagation — but that
requires us to have the numerical ODE solution for the backwards pass.

In[2], it was shown that the numerical ODE solution can be dynamically
recomputed (i.e. constant memory cost) using a reversible ODE solver.
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Figure: Illustration of a reversible ODE solver called “ALF” (taken from [2])
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Reversible ODE solvers

Definition (ODE solver with order of convergence «)

We say an ODE solver @ : R x R? — R converges with order o > 0 if
Ix(h) = @p()]| < ClA|**,
where x(h) is the solution at time |h| of an ODE started at x(0) := x,

x"=f(x) if h>0, or x'=-f(x) if h<o.

Definition (Symmetric reversibility)
We say an ODE solver @ is symmetric reversible if ®_p(P®py(x)) = x.

Example

For a general f: R? — R, Euler’s method is not symmetric reversible.

(X4 fa(x)h) — fo(x + fo(X)h)h # x
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Examples of reversible solvers

Example (Asynchronous Leapfrog Integrator (ICLR 2021))

n

Vasr = 2f(Xpy 1) = Vi,
Xn+1 := Xn +f(Xn+%)ha

1
X +% = Xn + §Vnh,

where Xy := x(0) and Vp := f(Xo).

Remark (Symmetric reversibility)

1
Xn+% = Xnt+1 — Evn-i-lh,

Vn = 2(K4) ~ Vas1
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Examples of reversible solvers

Example (Reversible Heun’s method (NeurIPS 2021))

Yn+1 = 2Xn — Yn +f(Yn)h,

Xas1 =X 3 (f(Va) +1(Vns 1))

where X = Yy = x(0).

Remark (Symmetric reversibility)

Yn = 2Xn-i-l - Yn+1 —f(yn—i-l)h,
1
Xn = Xnt1 — i(f(YnJrl) +f(Yn))h'
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Examples of reversible solvers

Both methods...

e achieve reversibility by introducing extra state.

have second order convergence with fixed step sizes.

have a potentially unstable term of the form 2A — B.

have worked in large-scale applications:

— A Neural ODE with the asynchronous leapfrog integrator achieved
comparable performance to a ResNet-18 (& 11 million parameters)
for classification on the ImageNet dataset [2].

— A Neural SDE with the reversible Heun scheme was successfully
used for turbulence modelling (~ 4.6 million parameters) [4].

can be defined for both ODEs and SDEs. However, in the SDE case,
we could only prove convergence for the Reversible Heun scheme.
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Examples of reversible solvers

However, [5] and [6] report that the reversible Heun method was too
unstable for their applications.

Asynchronous Leapfrog Integrator Reversible Heun method

X
e Yoyt :=2Xy — Yo + f(Ya)h,

Vier = 2f(X ) = Vi i X L) + (s
Xn+1 = Xn + %Vn+1h

1= Xf'l + %Vnh7
2

We believe that any instability is then amplified by these solvers when
e V, and f(X,) drift apart (for ALF)
e X, and Y, drift apart (for RH)
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Towards more general reversible solvers

Given an ODE solver &, we define the map Wy (x) := ®x(x) — x so that
Ix(h) = (x+ Za(x)]| < Clh*H,

where x(h) is the solution at time h of the ODE started at x(0) := x.

Definition (Proposed reversible ODE solver [7])
We construct a numerical solution {(Ys,Zn)}a>0 by Yo = Zp = x(0) and

Yn+1 = )\Yn + (1 - )\)Zn + qlh(Zn)7
Zny1:=2Zp — ‘I/—h(yn—f—l)a

where h > 0 is the step size and A € (0, 1] is a “coupling” parameter.
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Towards more general reversible solvers

This approach is based on two ideas:

e Extra state allows for a reversible computation graph.
(e.g. previous reversible solvers and coupling layers in neural nets)

xAL

A
(@  Un X—» e Ynt1 (b)  Yn ’ Ynt1
wy/ @ @ o\ ® @
Zn ./ C}_, Znt1 Zn + Zn41

Figure: (a) Forwards ODE solve. (b) Backward ODE solve.

e ODE solvers can be applied with positive and negative step sizes.

x(h) = @4(x(0)) "=" x(0) = ®_x(x(h))
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Towards more general reversible solvers

Recall the new solveris
Yn+1 = )\Yn + (1 — )\)Zn + \I/h(Zn),
Zny1:=2p — \I’fh(YnJrl)-

The first key property to note is that this is algebraically reversible since
Zn = Zn+1 + ‘I’—h(Yn+1)a
Secondly, we introduce A € (0, 1] so that Y, and Z, stay close together,

Yoi1 —Zny1 = AYn —Zn) + Up(Zn) + U_p(Ynt1) -

small if Zn=x(th) and Y41 = x(th+1)

But if A is too small, it may cause instabilities on the backwards solve.
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Towards more general reversible solvers

Theorem (Main result; any ODE solver can made reversible [7])
Suppose ¥ corresponds to an a-order numerical method for the ODE

where t € [0, T] for a fixed T. Then under a Lipschitz assumption on ¥,
there exists constants C, hmax > 0 such that

| Vi = x(te)|| < Che, @)
forallk € {0,1,--- ,N} where h € (0, hmax], tx := kh € [0, T] and
Y/H—l = )\Yn 2 (]- - )\)Zn + \Ifh(Zn),
Zn+1 = Zn - \I/—h(yn+1)>

with A € (0,1] and Yy = Zo = x(0).
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Stability of reversible ODE solvers
Although we can construct arbitrarily high order ODE reversible solvers,
we have not yet addressed the main challenges which concern stability.

Definition (A-stability region)
Consider the following linear ODE,

y'=ay, 2)
y(0) =1,

where a € C with Re(a) < 0. A numerical solution Y = {Yy}x>¢ of (2)
is said to be A-stable at « if Y, — 0 as k — oo. The stability region is

R={ae€C : Re(a) <0 and Y = {Yy} is A-stable at a}.

The Asynchronous Leapfrog Integrator and Reversible Heun method
are not A-stable (forany a € C).
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Stability of reversible ODE solvers

Numerically computing stability regions gives some promising results:

Euler Midpoint RK3 RK4

— Original

— Reversible (A = 0.8)

| U

-3 -2 -1 0 -3 -2 -1 0 -3 -2 -1 0 -3 -2 -1 0
Re(a) Re(a) Re(a) Re(a)

Im(a)

Figure: Stability regions for different reversible schemes (h =1 and A = 0.8).

We also see that decreasing A € (0, 1] increases the stability region.
However, if X is too small, then the backwards solve may be unstable.

Theoretically, we have only been able to find a closed-form expression
for the real part of these stability regions [7].
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Preliminary experiments

We first generate synthetic time series data {x(f;) };>o by simulating
Chandrasekhar’s white dwarf equation,

Cagy
dat
dv. 2 9 3
E__?V_(X -0)2,

where (x(0), v(0)) := (1,0).
We then train a Neural ODE using {x(t;)} to identify the above system.

In particular, we will compare against backpropagation with online
recursive checkpointing. In these examples, we will set A = 0.99.
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Preliminary experiments

Method Loss Time ‘Memory .
(x1073) (s) (effective checkpoints)
Reversible 0.122 1.90 +£0.04 2
Checkpointing  0.122  282.43+16.73 2
Checkpointing  0.122 31.41+0.47 4
Checkpointing  0.122 10.14+0.16 8
Checkpointing  0.122 8.52+0.47 16
Checkpointing  0.122 7.61+0.12 32
Checkpointing  0.122 4.87+0.07 44

Table: Time and memory cost incurred when training a Neural ODE to identify
Chandrasekhar’s white dwarf equation (1000 time and training steps).
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Preliminary experiments

10! 4

Runtime (s)

200 400 600 800 1000
Time steps (n)
Figure: Combined runtime of a forwards solve and backpropagation through
the midpoint ODE solver over n time steps. Here, we compare against
backpropagation with online recursive checkpointing at ¢ checkpoints.
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Preliminary experiments

101 4

Midpoint
Ralston3
RK4
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Time step, At

Figure: Convergence of original (solid) and reversible (dashed) ODE solvers.
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Preliminary experiments

We have also tested our approach on a continuous normalising flow [8]
and a neural controlled differential equation [9].

In both examples, we see similar performance compared to standard
backpropagation — but with much less memory required for training.

Solver —E[log pg] Memory Usage (GB)
Reversible Backprop Reversible Backprop

Midpoint 0.888 0.891 0.563 3.922

RK4 0.890 0.890 0.647 7.467

Dopri5 0.890 0.891 0.704 12.79

Table: Continuous Normalising Flow on the two moons dataset [10].
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Preliminary experiments

We have also tested our approach on a continuous normalising flow [8]
and a neural controlled differential equation [9].

In both examples, we see similar performance compared to standard
backpropagation — but with much less memory required for training.

Solver Accuracy (%) Memory Usage (GB)
Reversible  Backprop Reversible Backprop
Midpoint 78.4+55 789+6.7 0.434 1.09
RK4 79.0+ 59 764+5.4 0.468 1.86
Dopri5 80.1+£69 77.94+6.7 0.523 3.01

Table: Neural CDE on the CharacterTrajectories dataset [11].
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Conclusion

e Among the recent advances in neural differential equations,
reversible solvers have seen utility due to the accurate and
memory-efficient gradients that they provide during training.

e However, the current reversible NDE solvers have stability issues.
We believe that this instability is amplified by the “2A — B” terms.

e \We propose an approach in which an explicit ODE solver can be
converted to a reversible one with the same order of convergence.
Although this requires twice the function evaluations per step, we
often observe faster training times due to the memory reduction.

e The reversible solvers produce stability regions and have shown
promising empirical results — including against checkpointing.
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Future work

e Implementation of our method into the ODE/SDE/CDE library
“Diffrax” (github.com/patrick-kidger/diffrax):

Q sponsor L) Notifications % Fork 137 Yy star 15k

& patrick-kidger / diffrax Public

<> Code (© lIssues 162 19 Pullrequests 14  (® Actions [ Projects @ Security |~ Insights

Reversible Solvers #528
sammccallum wants to merge 4 commits into patrick-kidger:main from sammccallum:reversible (CJ

[l Checks o Files changed 5 +845 -4 mEEN

Q) Conversation 39 -0- Commits 4
=k
W sammccallum commented on Nov 19, 2024 P
——— & patrick-kidger (m]
Assignees

Here's an implementation of Reversible Solvers! This includes:

e Applications of reversible solvers for learning time-evolving PDEs
(which can easily have a high memory footprint).
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https://github.com/patrick-kidger/diffrax

Thank you
for your attention!

and our preprint can be found at:

Sam McCallum and James Foster. Efficient, Accurate and Stable
Gradients for Neural ODEs, arxiv:2410.11648, 2024.
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Examples of reversible solvers

Turbulence modelling is computationally demanding due to the fine
mesh and steps used to approximate the PDE. A transformer-based
Neural SDE model was recently developed for such simulations [4],
and was numerically discretized using the Reversible Heun method.

3‘4: »E md

F u.- 1'-

0 A 4

Figure: PDE simulation (left), Neural SDE (middle) and Neural network (right)
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